Heterogenic Final Cell Cycle by Chicken Retinal Lim1 Horizontal Progenitor Cells Leads to Heteroploid Cells with a Remaining Replicated Genome
نویسندگان
چکیده
Retinal progenitor cells undergo apical mitoses during the process of interkinetic nuclear migration and newly generated post-mitotic neurons migrate to their prospective retinal layer. Whereas this is valid for most types of retinal neurons, chicken horizontal cells are generated by delayed non-apical mitoses from dedicated progenitors. The regulation of such final cell cycle is not well understood and we have studied how Lim1 expressing horizontal progenitor cells (HPCs) exit the cell cycle. We have used markers for S- and G2/M-phase in combination with markers for cell cycle regulators Rb1, cyclin B1, cdc25C and p27Kip1 to characterise the final cell cycle of HPCs. The results show that Lim1+ HPCs are heterogenic with regards to when and during what phase they leave the final cell cycle. Not all horizontal cells were generated by a non-apical (basal) mitosis; instead, the HPCs exhibited three different behaviours during the final cell cycle. Thirty-five percent of the Lim1+ horizontal cells was estimated to be generated by non-apical mitoses. The other horizontal cells were either generated by an interkinetic nuclear migration with an apical mitosis or by a cell cycle with an S-phase that was not followed by any mitosis. Such cells remain with replicated DNA and may be regarded as somatic heteroploids. The observed heterogeneity of the final cell cycle was also seen in the expression of Rb1, cyclin B1, cdc25C and p27Kip1. Phosphorylated Rb1-Ser608 was restricted to the Lim1+ cells that entered S-phase while cyclin B1 and cdc25C were exclusively expressed in HPCs having a basal mitosis. Only HPCs that leave the cell cycle after an apical mitosis expressed p27Kip1. We speculate that the cell cycle heterogeneity with formation of heteroploid cells may present a cellular context that contributes to the suggested propensity of these cells to generate cancer when the retinoblastoma gene is mutated.
منابع مشابه
The Heterogenic Final Cell Cycle of Retinal Horizontal Cells
Shirazi Fard, S. 2014. The Heterogenic Final Cell Cycle of Retinal Horizontal Cells. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 995. 58 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-8941-0. The cell cycle is a highly complex process that is under the control of several pathways. Failure to regulate and/or complete the cell cycle often le...
متن کاملThe terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest
For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of th...
متن کاملMesenchymal Stem Cells: Signaling Pathways in Transdifferentiation Into Retinal Progenitor Cells
Several signaling pathways and transcription factors control the cell fate in its in vitro development and differentiation. The orchestrated use of these factors results in cell specification. In coculture methods, many of these factors secrete from host cells but control the process. Today, transcription factors required for retinal progenitor cells are well known, but the generation of these ...
متن کاملCell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملLim1 is essential for the correct laminar positioning of retinal horizontal cells.
Although much is known about the transcriptional regulation that coordinates retinal cell fate determination, very little is known about the developmental processes that establish the characteristic laminar architecture of the retina, in particular, the specification of neuronal positioning. The LIM class homeodomain transcription factor Lim1 (Lhx1) is expressed in postmitotic, differentiating,...
متن کامل